Multivariate Copula Analysis Toolbox (MvCAT): Describing Dependence and Underlying Uncertainty Using a Bayesian Framework

نویسندگان

  • Mojtaba Sadegh
  • Elisa Ragno
  • Amir AghaKouchak
چکیده

We present a newly developed Multivariate Copula Analysis Toolbox (MvCAT) which includes a wide range of copula families with different levels of complexity. MvCAT employs a Bayesian framework with a residual-based Gaussian likelihood function for inferring copula parameters and estimating the underlying uncertainties. The contribution of this paper is threefold: (a) providing a Bayesian framework to approximate the predictive uncertainties of fitted copulas, (b) introducing a hybrid-evolution Markov Chain Monte Carlo (MCMC) approach designed for numerical estimation of the posterior distribution of copula parameters, and (c) enabling the community to explore a wide range of copulas and evaluate them relative to the fitting uncertainties. We show that the commonly used local optimization methods for copula parameter estimation often get trapped in local minima. The proposed method, however, addresses this limitation and improves describing the dependence structure. MvCAT also enables evaluation of uncertainties relative to the length of record, which is fundamental to a wide range of applications such as multivariate frequency analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

Accounting for Multivariate Input Uncertainty in Large-Scale Stochastic Simulations

Two important components of a large-scale stochastic simulation are the generation of random variates from multivariate input models and the analysis of simulation output data to estimate mean performance measures and confidence intervals. The common practice is to obtain the multivariate input models applying statistically valid fitting algorithms to historical data sets of finite length and c...

متن کامل

Copula based factorization in Bayesian multivariate infinite mixture models

Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. However, these models have been rarely applied in more than one dimension. Indeed, implementation in the multivariate case is inherently difficult due to the rapidly increasing numb...

متن کامل

Risk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models

H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...

متن کامل

In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes

Conditional copula models are flexible tools for modelling complex dependence structures in regression settings. We construct Bayesian inference for the conditional copula model adapted to regression settings in which the bivariate outcome is continuous or mixed. The dependence between the copula parameter and the covariate is modelled using cubic splines. The proposed joint Bayesian inference ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017